

Automatic sliding doors DCU1
 DCU1-2M

EN Wiring diagram

Table of contents

Symbols and means of representation4
Validity4
Product liability 4
1 Safety instructions 5
1.1 Important safety instructions 5
1.2 Installation details 5
1.3 Safety-conscious working 5
1.4 Inspection of the installed system 5
1.5 Disposal of the door system 6
2 Abbreviations 6
3 Safety sensor "close". 8
3.1 Active infrared control light curtain and radar movement detector GC 363 R 8
3.2 Active infrared control light curtain and self-monitored radar movement detector GC 363 SF 9
3.3 Active infrared control light curtain GC 339 10
3.4 Active infrared control light curtain and radar movement detector GC 362 R 10
3.5 Active infrared control light curtain and self-monitored radar movement detector GC 362 SF 11
3.6 Active infrared control light curtain GC 333 12
3.7 Active infrared sensor AIR 30 13
3.8 1-channel light barrier GZ 470 V 13
3.9 2-channel light barrier GZ 472 V 14
3.10 4-channel light barrier GZ 472 V 14
4 Safety sensor "open" 15
4.1 Active infrared control light curtain GC 339 15
4.2 Active infrared control light curtain GC 333 16
4.3 Active infrared sensor AIR 30 16
5 Break-out doors 17
5.1 Break-out sensor 17
5.2 Break-out sensor and safety sensor "open" 17
5.3 Break-out sensor with active infrared control light curtain GC 339 18
5.4 Break-out sensor with active infrared fan-shaped sensor GC 333 18
5.5 Break-out sensor with active infrared fan-shaped sensor AIR 30 19
6 Series connection of safety sensors 20
6.1 Safety sensor "close" (standard doors) 20
6.2 Safety sensor "close" (FR doors) 22
6.3 Protecting the sensor cable against short-circuit 24
7 Contact sensor authorised 25
7.1 Key push button 25
7.2 Emergency opening switch without illumination 25
7.3 Emergency opening switch with illumination 25
8 Contact sensor inside 26
8.1 Standard doors 26
8.2 Doors on rescue routes 27
9 Contact sensor outside 28
9.1 Radar movement detector GC 302 R 28
9.2 Active infrared fan-shaped sensor GC 363 R 28
9.3 Active infrared fan-shaped sensor and radar movement detector GC 362 R 28
9.4 Push button (potential-free contact) 28
10 Stop 28
11 Programmable inputs 29
11.1 Switch function 29
11.2 Radio activation 29
11.3 Pharmacy opening 30
11.4 Emergency lock 30
12 WC control 31
13 Interlocking door system, vestibule 32
14 Mode of operation 33
14.1 Mechanical programme switch 33
14.2 Switching the operating mode using push buttons or switches 34
14.3 Keypad programme switch 34
14.4 Display programme switch (DPS) with OFF key 35
14.5 Display programme switch (DPS) without OFF key 35
14.6 Display programme switch, old version (mat. no. 103940) 36
14.7 Reset function (DPS with OFF key, TPS) 36
14.8 Blocking or releasing operation of TPS and DPS 36
15 Configurable outputs 37
15.1 PA1 (gong) 37
15.2 PA2 (fault, fan). 37
16 Mains connection 38
17 Locking 39
17.1 Locking by toothed belt 39
17.2 Rod locking, break axle 39
17.3 Hook bolt Lock A 40
18 Rechargeable battery 40
19 Motor 41
20 Control 42
21 Commissioning and service 43
21.1 Production test 43
21.2 Commissioning 43
21.3 Service. 46
22 Service menu 47
22.1 Service terminal ST220 47
22.2 Display programme switch (DPS) 57
23 Fault messages 64
23.1 Display programme switch 64
23.2 Keypad programme switch 65

Symbols and means of representation

Warnings

In these instructions, warnings are used to warn against material damage and injuries.

- Always read and observe these warnings.
- Observe all the measures that are marked with the warning symbol and warning word.

Warning symbol	Warning word	Meaning
DANGER	Danger to persons. Non-compliance will result in death or serious injuries.	
WARNING	Danger to persons. Non-compliance can result in death or serious injuries.	

Other symbols and means of representation

Important information and technical notes are highlighted to explain correct operation.

Symbol	Meaning
means "important note"	
means "additional information"	
Symbol for an action: Here you have to do something.	
If there are several actions to be taken, keep to the given order.	

Validity

Valid for units with
Hardware: DCU1 Rev D, DCU1-2M Rev D;
Software: DCU1 V3.3, DCU1-2M V3.3

Product liability

In accordance with the manufacturer's liability for their products as defined in the German "Produkthaftungsgesetz" (Product Liability Act), the information contained in this brochure (product information and proper use, misuse, product performance, product maintenance, obligations to provide information and instructions) is to be noted and followed.
Failure to comply releases the manufacturer from his statutory liability.

1 Safety instructions

1.1 Important safety instructions

It is important to follow these instructions for the safety of persons.
These instructions must be kept.

- Only specialists authorised by GEZE are permitted to carry out installation, commissioning and maintenance work.
- Unauthorised modifications to the system exclude GEZE from liability for any resulting damages.
- GEZE makes no guarantee for combinations with third-party products. Use only original GEZE parts for repair and maintenance work as well.
- The connection to the mains voltage must be carried out by a qualified electrician. Perform the power connection and equipment earth conductor test in accordance with VDE 0100 Part 610.
- Use an on-site 10-A overload cut-out as the line-side disconnecting device.
- Attach safety stickers to glass door leaves, mat. no. 081476.
- In accordance with Machinery Directive 98/37/EC, a safety analysis is to be performed and the door system identified in accordance with CE Identification Directive 93/68/EEC before the door system is commissioned.
- Observe the latest versions of directives, standards and country-specific regulations, in particular:
- AutSchR "Guidelines on automatic sliding doors in escape and rescue routes"
- EN 16005 "Power operated pedestrian doorsets - Safety in use - Requirements and test methods"
- DIN 18650, Part 1 and Part 2 "Automatic door systems"
- DIN VDE 100-600 "Installation of low-voltage systems - Part 6 Tests"
- DIN EN 60335-2-103 "Safety of electrical devices for home use and similar purposes; special requirements for drives, for gates, doors and windows"
- Accident Prevention Regulations, in particular BGV A1 (VBG1) "General Regulations" and BGV A3 (VBG4) "Electrical Installations and Resources"

1.2 Installation details

- The drive is designed only for use in dry rooms.
- Only use the cables prescribed in the cable plan provided. Lay shields in accordance with the wiring diagram.
- Always use insulated wire-end ferrules for wire cores.
- Insulate the wires that are not used.
- Secure loose, internal drive cables with cable ties.
- Observe the maximum permitted overall current drain required to supply the periphery.

1.3 Safety-conscious working

- Secure the workplace against unauthorised entry.
- Watch the swivelling range of long system parts.
- Secure the hood/drive shrouding against falling.
- Before carrying out work on the electrical system, cut the power supply (mains and battery) and check to ensure that there is no power. When using an uninterrupted power supply (UPS), the system will still be under power even when disconnected from the mains.
- Risk of injury by moving parts (drawing in of hair, clothing, ...) when a drive is opened.
- Risk of injury caused by unsecured crushing, impact, drawing-in or shearing spots.
- Risk of injury caused by sharp edges in the drive.
- Risk of injury due to glass breakage.

1.4 Inspection of the installed system

- Measures for checking safety and prevention of crushing, impact, shearing or drawing-in spots.
- Check the function of the presence sensors and movement detectors.
- The detection field of the movement detector in the direction of emergency exit must cover the opening width $(O ̈ W) \times 1.5 \mathrm{~m}$ in front of the door.
- Check the protective earth connection to all metal parts that can be touched.

1.5 Disposal of the door system

- The door system is made up of materials that should be sent for recycling. For this purpose, the individual components should be sorted corresponding to material type:
- Aluminium (profiles, covering, return pulleys, sliding blocks, ...)
- Iron (drivers, screws, ...)
- Plastic
- Electronic parts (bolts, motor, control, transformer, sensors, ...)
- Cable
- Rechargeable battery
- The parts listed should be handed in to communal collection points or be disposed of via a scrap recycling company.
- Rechargeable batteries and batteries contain pollutants and heavy metals.
- Rechargeable batteries and waste batteries should be handed in to communal collection points or retailers.
- The rechargeable battery for the drive is a plug-in type and connected to the control; it can be removed easily by loosening two fixing screws.

Information regarding the Battery Directive:
(Applicable in Germany and in all other member states of the European Union as well as in other European countries, together with the countries' own provisions for a separate waste battery collection system.)
In accordance with the Battery Directive, we are obliged to inform you of the following in connection with the sale of batteries or rechargeable batteries respectively in connection with the delivery of devices containing batteries or rechargeable batteries: Rechargeable batteries and batteries must not be disposed of with household waste. Disposal with household waste is expressly forbidden according to the Battery Directive. As the final consumer, you are bound by law to return waste batteries and rechargeable batteries. Please return waste batteries and rechargeable batteries to a communal collection point or retailer.
Following use, you may return any batteries or rechargeable batteries received from us by post. The address is: GEZE GmbH, Incoming Goods, Reinhold-Vöster-Str. 21-29, 71229 Leonberg/Germany.

2 Abbreviations

Wire colours

BN	brown	GN	green	OG	orange
BK	black	GY	grey	P-K	pink
BU	blue	YE	yellow	RD	red

Connections, terminals and plugs

AIR	Active infrared	M1B	Motor 1, B	SABO	Sabotage
	control light curtain	M2B	Motor 2, B	SCR	Shield
APO	Pharmacy opening	MPS	Mechanical programme	SHLD	Shield
AU	Automatic		Switch	SIO	Safety sensor "open"
DO	Permanently open	NA	Night	SIS	Safety sensor "close"
DPS	Display programme	N.C.	Not used	ST220	Service terminal ST220
	switch	NC	Opening contact		(mat. no. 087261)
ENC	Incremental en-		(normally closed)	STG	Fault
	coder	NO	Closer contact	SYNC	Synchronisation
GND	Reference potential		(normally open)	TEMP	Temperature sensor
IR	Infrared	NOTVER	Emergency lock	Test	Test input
KA	Contact sensor	OFF	Off	TPS	Keypad programme
	outside	ÖW	Opening width		switch
KB	Contact sensor	PA	Output programmable	TST	Test signal safety sensors
	authorised	PE	Input programmable	ULKD	Unlocked
KI	Contact sensor	PROG	Programming interface	+UB	Supply voltage +
	inside	PS	Programme switch	-UB	Supply voltage -
LK	Luster terminal	RBM	Radar movement detector	24V	Supply voltage for
LCK_A	Locking, A	RUN	Status display		external devices,
LCK_B	Locking, B	RS485	Communication signal		max. 1.0 A
LKD	Locked		to DPS, TPS	24VAKKU	Supply during mains
LS	Shop closing				power failure, max. 20 mA
M1A	Motor 1, A				
M2A	Motor 2, A				

PA1 PA2

3 Safety sensor "close"

- Up to four safety sensors "close" can be connected (terminals SIS1, SIS2, SIO1 and SIO2).
- During detection, the output of the safety sensor "close" is open. GND is applied to the input.
- Set the contact type for the terminal used:
- With DPS: $51,52,53$ or 54 to 02
- With ST220: "SI1-", "SI2-", "SI3-" or "SI4-contact type" to "opener"
- Set the function for detection (see Service menu chapter):
- With DPS: Fi,F2,F3 or F4
- With ST220: "SI1-", "SI2-", "SI3-" or "SI4-function"
- Check function and correct setting of the sensors during commissioning and service.

3.1 Active infrared control light curtain and radar movement detector GC 363 R

(!
EN 16005
Installation height max. 3500 mm

- GC 363 R black, mat. no. 151237
- GC 363 R according to RAL, mat. no. 151238
- The GC 363 R contains an active infrared control light curtain and a direction-sensitive radar movement detector.

[^0]- In order to safeguard the closing process in compliance with EN 16005 and DIN 18650, a light curtain must be installed on both the inside and outside. The detection field of the light curtain on the floor must cover the whole door width.
- Follow installation instructions GC 363 R / SF.

Necessary parameter adjustment GC 363 R

- Output configuration:	WHEEL: OUTPUT	to $1(\mathrm{NO})$
	AIR: OUTPUT	to $1(\mathrm{NC})$

Necessary setting on the control

- Set parameter Ci (contact sensor inside, contact type) or Co (contact sensor outside, contact type) to 01 (closer).

3.2 Active infrared control light curtain and self-monitored radar movement detector GC 363 SF

DIN 18650
EN 16005

Installation height max. 3500 mm

- GC 363 SF black, mat. no. 151239
- GC 363 SF according to RAL, mat. no. 151240
- The GC 363 SF contains an active infrared control light curtain and a self-monitored, direction-sensitive radar movement detector with frequency output (100 Hz).
- Follow installation instructions GC 363 SF.
- Set the detection field and sensitivity of the radar movement detector as per AutSchR:
- Detection field $=0 ̈ W \times 1.5 \mathrm{~m}$, speed greater than $10 \mathrm{~cm} / \mathrm{s}$.

$\begin{array}{ll}1 & \text { AlR curtain } \\ 2 & \text { Test } \\ 3 & \text { not used }\end{array}$
- In order to safeguard the closing process in compliance with EN 16005 and DIN 18650, a light curtain must be installed on both the inside and outside. The detection field of the light curtain on the floor must cover the whole door width.

Necessary parameter adjustment GC 363 SF

- Output configuration:	WHEEL: OUTPUT	to 6 (freq)
	AIR: OUTPUT	to 1 (NC)

Necessary setting on the control

- Set parameter Ci (contact sensor inside, contact type) or Co (contact sensor outside, contact type) to 04 (frequency).

3.3 Active infrared control light curtain GC 339

DIN 18650
 EN 16005

- GC 339 black, mat. no. 151251
- GC 339 according to RAL, mat. no. 151252
- Follow installation instructions GC 339.
- Insulate unused wires (WH, YE).

Necessary parameter adjustment GC 339

- Output configuration: AIR: OUTPUT to 1 (NC)

3.4 Active infrared control light curtain and radar movement detector GC 362 R

DIN 18650 ENTATI5

Installation height max. 3000 mm

- GC 362 R black, mat. no. 112753
- GC 362 R according to RAL, mat. no. 130527

GC 362 R		BN	SIS 1	GND	1	GND
125 mA	$\begin{array}{r} \hline-U B \\ +U B \end{array}$		1		2	24V
		GN	2	24 V	SIS 2	SIS 2
(1)	$\pi{ }_{\pi}^{\pi}$	GY	11	$\begin{aligned} & \text { SIS } 1 \\ & \text { GND } \end{aligned}$	12	
		PK	1		1	GND
(2)	COM	BU	2	24 V	2	24V
		RD	10	TS T	10	TST
		WH	KA	24V	KI	24V
RBM		YE	2		2	
			23	KA	21	KI

[^1]The GC 362 R contains an active infrared control light curtain and a direction-sensitive radar movement detector.

- Follow installation instructions, mat. no. 112865.
- Accessories recommended for setting the sensor:
- Remote control, mat. no. 100061.
- Accessories recommended for setting the light curtain:
- Infrared detector, mat. no. 112321

Accessories:

- Ceiling installation kit, black, mat. no. 115533
- Ceiling installation kit, white, mat. no. 115532
- Ceiling bracket, mat. no. 115534
- Rain cover, mat. no. 126830
- To safeguard the closing movement, a light curtain with a detection field covering the entire door width on the floor and monitoring the area up to a height of at least $2,000 \mathrm{~mm}$ above the ground (where the main closing edge meets the opposite closing edge) must be mounted both inside and outside as per DIN 18650.
- The distance between the detection fields must not exceed 200 mm .

D650 - If only one light curtain is used, the detection field must be located on the floor as close to the door leaf as possible.

- Set the tilt angle of the optic block accordingly for this purpose.
- Half- or fully-grooved prism: wide/narrow detection field of the IR curtain
- 3-piece/6-piece aerial insert: wide/narrow detection field of the radar movement detector

Necessary parameter adjustment GC 362 R

- Output configuration: 1 (radar output active, IR output passive)
- Presence detection 1 to 6 (1 to 60 minutes); the value $0(30 \mathrm{sec}$.) is not permitted. duration:
- Monitoring mode:

1 (on)

- Multi mode: If adjacent light curtains overlap, set different infrared frequencies.

Necessary setting on the control

- Set Ci (contact sensor inside, contact type) or Co (contact sensor outside, contact type) to 01 (closer).

3.5 Active infrared control light curtain and self-monitored radar movement detector GC 362 SF

Installation height max. 3000 mm

- GC 362 SF black, mat. no. 127091
- GC 362 SF according to RAL, mat. no. 130526

- The GC 362 SF contains an active infrared control light curtain and a self-monitored, direction-sensitive radar movement detector with frequency output (100 Hz).
- Follow installation instructions, mat. no. 112869.
- The GC 362 SF is used in the direction of emergency exit.
- Set the detection field and sensitivity of the radar movement detector as per AutSchR:
- Detection field $=0$ Ö $\times 1.5 \mathrm{~m}$, speed greater than $10 \mathrm{~cm} / \mathrm{s}$.

Necessary setting on the control

- Set Ci (contact sensor inside, contact type) or Co (contact sensor outside, contact type) to 04 (frequency).

Necessary parameter adjustment GC 362 SF

- Output configuration:	1 (IR output passive)
- Presence detection	1 to $6(1$ minute to 60 minutes), the value $0(30 \mathrm{~s})$ is not permitted.
duration:	
- Monitoring mode:	1 (on)
Multi mode:	If adjacent light curtains overlap, set different infrared frequencies.

- The connection of two radar movement detectors of type GC 362 SF in the direction of emergency exit is not possible.
- Instead, use sensor GC 363 SF incl. GC 363 S interface (see chapter 6.2.2).

3.6 Active infrared control light curtain GC 333

DIN 18650 E

Installation height up to 3000 mm

- GC 333 black, mat. no. 112755
- GC 333 according to RAL, mat. no. 130528

The GC 333 contains an active infrared control light curtain.

- Follow installation instructions, mat. no. 112873.
- For further information see GC 362 R (SIS).

Accessories:

- Ceiling installation kit, black, mat. no. 115533
- Ceiling installation kit, white, mat. no. 115532
- Ceiling bracket, mat. no. 115534
- Rain cover, mat. no. 126830
- Accessories recommended for setting the sensor:
- Remote control, mat. no. 100061
- Accessories recommended for setting the light curtain:
- Infrared detector, mat. no. 112321

Necessary parameter adjustment GC 333

Monitoring mode:
1 (on)

3.7 Active infrared sensor AIR 30

(!) DNys60 Ex16005

- AIR 30, mat. no. 072393
- Relay, mat. no. 103352

or

1 Test
Illustration: Static condition with operating voltage switched on

- Follow the installation instructions.
- Only use the AIR 30 as an additional sensor for monitoring closing. An AIR 30 sensor alone is not sufficient to meet the requirements as per DIN 18650.
- Set the light/dark selector switch to (D) (setting dark-switching)
- Adjust the sensing width to 0.2 m above the floor using the adjustment screw.

3.8 1-channel light barrier GZ 470 V

(.) DN18650
 EX1605

GZ 470 V, mat. no. 112726

- Installation 1.0 m above the floor.
- Current consumption GZ $470 \mathrm{~V}: 50 \mathrm{~mA}$
or

$\begin{array}{ll}1 & \mathrm{GZ} \mathrm{470V} \text { receiver } \\ 2 & \text { max. } 5 \mathrm{~m} \\ 3 & \mathrm{GZ} 470 \mathrm{~V} \text { transmitter }\end{array}$
(. The side distance between the light barrier axis and the sliding panel level must not exceed 5 cm .

3.9 2-channel light barrier GZ 472 V

1 $\overline{\text { DIN } 18650}$ 为

GZ 472 V, mat. no. 112727
or

- Installation 0.2 m and 1.0 m above the floor respectively.
- Current consumption GZ 472 V: 70 mA
(! The side distance between the light barrier axis and the sliding panel level must not exceed 5 cm .

3.10 4-channel light barrier GZ 472 V

DIN 18650 EThent

According to DIN 18650 safeguarding with light barriers is not suitable for people in need of special protection.

- Note and follow other standard-related requirements such as power limitation etc.

GZ 472 V, mat. no. 112727

- Install one channel 0.2 m above the ground, another one 1.0 m above the ground and the other channels as required.
- Install GZ 472 SE V on the left, GZ 472 ES V on the right in each case.
- Current consumption GZ 472 V: 70 mA

(!
The side distance between the light barrier axis and the sliding panel level must not exceed 5 cm .

4 Safety sensor "open"

! Check function and correct setting of the sensors during commissioning and service.

- Up to four safety sensors "open" can be connected (terminals SIO1, SIO2, SIS1 and SIS2).
- During detection, the output of the safety sensor "open" is open. GND is applied to input SIO1 or SIO2.
- Set contact type for terminals used:
- With DPS:Set 53,54,5i or 52 to 02 .
- ST220: Set parameter "SI3", "SI4", "SI1" or "SI2 contact type" to "open"
- Set function for terminals used (see Chapter 23):
- Set DPS parameter $F \mathcal{F}, F 4, F i$ or $F \mathcal{Z}$.
- Set ST220 parameter "SI3-", "SI4-", 2SI1-" or "SI2-function".
(!) For doors in rescue routes:
If the safety sensor "open" is activated during opening, the door does not stop until the reduced opening width is reached. The reduced opening width must be larger than or the same size as the required escape route width (official building approval).

4.1 Active infrared control light curtain GC 339

DIN 18650
 EN 16005

Installation height max. 3500 mm

- GC 339 black, mat. no. 151251
- GC 339 according to RAL, mat. no. 151252
- Follow installation instructions GC 339.
- Insulate unused wires (WH, YE).

$\begin{array}{ll}1 & \text { AIR curtain } \\ 2 & \text { Test }\end{array}$

Necessary parameter adjustment GC 339

- Output configuration: AIR: OUTPUT
- AIR width:
to 1 (NC)
For installation in open position right: Set AIR width to the right-hand sub-panel.

For installation in open position left: Set AIR width to the left-hand sub-panel.

4.2 Active infrared control light curtain GC 333

DIN 18650 ENGen5

Installation height up to 3000 mm
GC 333 black, mat. no. 112755

1 AIR curtain
2 Test

* Insulate unused wires (WH, YE)

Necessary parameter adjustment GC 333

Monitoring mode: 1 (on)

- Follow installation instructions, mat. no. 112873.
- Prism 0.5 m left for monitoring the right-hand fixed panel, 0.5 m right for monitoring the left-hand fixed panel (the prisms are included with the sensor).

4.3 Active infrared sensor AIR 30

(1) $\begin{aligned} & \text { Dnvir865 } \\ & \text { EX } 10095\end{aligned}$

- Follow the installation instructions.
- For further information see AIR 30 (SIS).

5 Break-out doors

- Before commissioning, set the drive type in the Service menu "Door parameters" "Drive type" (Slimdrive SL BO, ECdrive BO or TSA 360NT BO).
- Note the contents of the "Guidelines on automatic sliding doors in escape and rescue routes (AutSchR)":
- The programme switch must be protected from unauthorised access e.g. by installing a key push button to block the programme switch.
- The functions emergency lock, interlocking door system and vestibule are not permitted with automatic sliding doors on rescue routes.
- The operating mode setting "Night" with timer or switch is not possible.
- The function "pharmacy" is not available as an input parameter.
- Break-out sensor, mat. no. 076114
- The break-out sensors monitor the position of the swing leaves. They are connected to the inputs SIO1 or SIO2 together with any safety sensors "open" that are available.
- When the break-out sensor is triggered, the door stops during opening and closing.
- Break-out sensors
- SIO1 is configured automatically.
- If used, SIO2 must be configured to contact type "opener" and function "break-out".
- When the side part has been swung out, the break-out sensor output is open. GND is applied to input SIO1 or SIO2.

5.1 Break-out sensor

- With 1-leaf systems one break-out sensor is mounted (SIO1), any safety sensor open that is available is connected to SIO2.
- With 2-leaf systems two break-out sensors are mounted (inputs SIO1 and SIO2 of the control unit).
Break-out sensor

5.2 Break-out sensor and safety sensor "open"

- Two break-out sensors and two safety sensors "open" can be connected (inputs SIO 1 and SIO 2 of the control).
- During detection, the output of the safety sensor "open" is open. GND is applied to input SIO1 or SIO2.
- When a break-out sensor or a safety sensor "open" is triggered, the door stops during opening and closing.

5.3 Break-out sensor with active infrared control light curtain GC 339

DIN 18650
 EN 16005

For further information see section 3.3 Active infrared control light curtain GC 339.

5.4 Break-out sensor with active infrared fan-shaped sensor GC 333

$1 \overline{\text { DIN } 18650}$ ENL6AT5

- Further information in chapter 4.2 Active infrared control light curtain GC 333

5.5 Break-out sensor with active infrared fan-shaped sensor AIR 30

(!) DN18600 EX16005

1 Test
VB Connection of the wires and fixing of sensor cables (see section 6.3 Protecting the sensor cable against shortcircuit)

Illustration: Static condition with operating voltage switched on

- For further information see chapter 4.3 Active infrared sensor AIR 30

6 Series connection of safety sensors

6.1 Safety sensor "close" (standard doors)

\therefore DIN 18650
 EN 16005

6.1.1 Active infrared control light curtain (GC 339, GC 333) with safety/activation sensor (GC 363 R, GC 362 R)

- GC 339 and GC 363 R meet the requirements as per EN 16005 and DIN 18650.
- GC 333 and GC 362 R meet the requirements as per DIN 18650.
(!) For GC 363 R, GC 362 R:
- Connect the AIR output directly to terminal SIS of the control.

For GC 362 / GC 333:

- Set the parameter "TEST (monitoring" to On [1].

6.1.2 Safety/activation sensors GC 363 R (GC 362 R)

- GC 363 R meets the requirements as per EN 16005 and DIN 18650.
- GC 362 R meets the requirements as per DIN 18650.

For GC 362:

- Set the parameter "TEST (monitoring" to On [1].

GC 363 R, GC 362 R

2. Sensor

1 AIR curtain
2 Test
VB Connection of the wires and fixing of sensor cables (see section 6.3 Protecting the sensor cable against shortcircuit)

Illustration: Static condition with operating voltage switched on

6.2 Safety sensor "close" (FR doors)

i 园

6.2.1 Active infrared control light curtain (GC 339, GC 333) with safety/activation sensor (GC 363 SF, GC 362 SF)

- GC 339 and GC 363 SF meet the requirements as per EN 16005 and DIN 18650.
- GC 333 and GC 362 SF meet the requirements as per DIN 18650.
(!) For GC 363 R, GC 362 R:
- Connect the AIR output directly to terminal SIS of the control.

For GC 362 / GC 333:

- Set the parameter "TEST (monitoring" to On [1].

6.2.2 Safety/activation sensor GC 363 SF

i

$\overline{\text { DIN } 18650}$
EN 16005

- Two interfaces GC 363 S and two relays are required for the series connection of two GC 363 SF.
- For further information see section 3.2 Active infrared control light curtain and self-monitored radar movement detector GC 363 SF
Set the parameters:
- Ci (KI contact type) to 02 (opener redundant).
- E3 (PE3 function) to 01 (KI 2).
- Accessories:
- Interface GC 363 S, mat. no. 151361
- Relay (with free-wheeling diode), mat. no. 103352
- GC 363 SF setting:
- WHEEL: OUTPUT to 5 (current/NC)

GC 363 SF

[^2]
6.3 Protecting the sensor cable against short-circuit

When connecting the sensor cables to the plug-type connectors SIS1, SIS2, SIO1, SIO2 use the following method:

Combine several wires to be connected in one wire-end ferrule

Connect VB wires using an insulated parallel connector
Parallel connectors: e.g. Bürklin, order no. 07F680

- Use shrink tubing to insulate wires until the start of the cable sheath. The shrink tubing must project 10 mm over the insulated parallel connector.
- Lay the insulated wires backwards over the cable sheaths.
- Insulate non-used wires and lay them backwards over the cable sheaths.
- Fix wires and cables using 2 cable ties.

Secure sensor cables against movement

- Fix the sensor cables to the cable holder using a cable tie (1).

7 Contact sensor authorised

- When activated, the output of the contact sensor authorised is closed (24V AKKU is applied to the KB input).
- When KB is activated, the door opens fully, even if the operating mode $\boldsymbol{F i n}^{\prime}$ winter is set.
! Do not use terminal strip "KB" for supplying external loads (e.g. number codelock). Otherwise the battery will not be charged.
- Key push button SCT, single-pole, flush-mounted, AS 500 without profile half cylinder, mat. no. 117996
- Accessories:
- Profile half cylinder, mat. no. 090176
- Additional contact, mat. no. 024467 (the additional contact is not a sabotage contact, it is intended to release the DPS or TPS)

7.1 Key push button

7.2 Emergency opening switch without illumination

- Mat. no. 067846

After activation, the housing must be opened with the appropriate key and the unlock lever activated in order to unlock the switch.

7.3 Emergency opening switch with illumination

- Surface-mounted, AS 500, alpine white, mat. no. 137967
- Flush-mounted, mat. no. 136571

After activation, the switch must be unlocked by pulling out the mushroom button.

8 Contact sensor inside

The KI input is active in operating modes $R 1 \mathrm{~L}$ and $L 5$.

8.1 Standard doors

© X

During activation, the output of the contact sensor inside is closed (24 V are applied to the KI input).

8.1.1 Radar movement detector GC 302 R

- GC 302 R black, mat. no. 124087
- GC 302 R according to RAL, mat. no. 124088 The remote control does not work with detector hood mounted, LED not visible.
- The GC 302 R is a direction-sensitive radar movement detector.

- Follow installation instructions, mat. no. 123457.
- Accessories:
- Remote control, mat. no. 099575
- Ceiling installation set, mat. no. 115384
- Rain cover, mat. no. 115339
- If several GC 302 R units are installed near to one another or behind one another, set different device addresses using the two DIP switches. Otherwise the settings of the other detectors will also be changed by the remote control.
8.1.2 Active infrared fan-shaped sensor and radar movement detector GC 363 R

See GC 363 R (SIS), chapter 3.2 Active infrared control light curtain and self-monitored radar movement detector GC 363 SF.
8.1.3 Active infrared fan-shaped sensor and radar movement detector GC 362 R

See GC 362 R (SIS), chapter 3.4 Active infrared control light curtain and radar movement detector GC 362 R
8.1.4 Push button (potential-free contact)

- Plastic elbow switch, white, mat. no. 114078
- Plastic elbow switch, stainless steel, mat. no. 114077
- Stainless steel elbow switch, mat. no. 119898
- Stainless steel elbow switch LS 990, surface-
 mounted, mat. no. 128582
- Stainless steel elbow switch LS 990, flush-mounted, mat. no. 128583

8.2 Doors on rescue routes

i 园

- Install self-monitored movement detector in the direction of emergency exit.
- Upon activation, the output of the contact sensor inside is open; GND is applied to the KI input.
- Set the detection field and sensitivity of the radar movement detector as per AutSchR:
- Detection field $=$ ÖW $\times 1.5 \mathrm{~m}$, speed greater than $10 \mathrm{~cm} / \mathrm{s}$.

8.2.1 Radar movement detector GC 302 SV

- GC 302 SV, black, mat. no. 124089

- GC 302 SV according to RAL, mat. no. 124090 (the remote control does not work with detector hood mounted, LED not visible)
- GC 302 SV is a self-monitored direction-sensitive radar movement detector with analogue voltage output (0 V ... 10 V).
- Follow installation instructions, mat. no. 123456.
- DPS: Set parameter $[$, to 03 .
- ST220: Set parameter "KI contact type" to "voltage".

For further information see GC 302 R (KI), chapter 8.1.1 Radar movement detector GC 302 R.

8.2.2 Active infrared fan-shaped sensor and radar movement sensor GC 362 SF

See GC 362 SF (SIS), chapter 3.5 Active infrared control light curtain and self-monitored radar movement detector GC 362 SF.

9 Contact sensor outside

- The KA input is only active in operating mode \boldsymbol{R}_{L}.
- During activation, the output of the contact sensor outside is closed (24 V applied at the KA input).

9.1 Radar movement detector GC 302 R

- See GC 302 R (KI), chapter 8.1.1 Radar movement detector GC 302 R.

9.2 Active infrared fan-shaped sensor GC 363 R

See GC 363 R (SIS), chapter 6.1.1 Active infrared control light curtain (GC 339, GC 333) with safety/activation sensor (GC 363 R, GC 362 R).

9.3 Active infrared fan-shaped sensor and radar movement detector GC 362 R

See GC 362 R (SIS), chapter 6.1.1 Active infrared control light curtain (GC 339, GC 333) with safety/activation sensor (GC 363 R, GC 362 R).

9.4 Push button (potential-free contact)

- See push button (KI), chapter 8.1.4 Push button (potential-free contact).

10 Stop

(1) X

For personal protection as per DIN 18650 and EN 16005:

- Connect terminating resistance to monitor the input in accordance with the configuration.

11 Programmable inputs

The control features three programmable inputs, PE1 (terminal 51), PE2 (terminal 52) and PE3 (terminal 22), that can be allocated different control functions. The inputs can be programmed using the display programme switch DPS or the service terminal ST220. The functions are described in the Service menu DPS section (2nd menu) and in the Service terminal ST220 section (Configurable inputs).

11.1 Switch function

- With DPS: Set $E i, E Z$ or $E Z$ to i 10 (switch function) or $i l$ (switch function with closing after holdopen time).
- With ST220: Set PE1-, PE2- or PE3-function to "switch function" or "switch function OHZ".

- During activation, the push button is closed (24 V is applied to inputs PE1, PE2 and PE3).
- The first switch contact opens the door and the next closes the door.
- For the switch function with closing after the hold-open time, the door closes automatically after the holdopen time elapses providing it was not closed via the switch beforehand.
- Check whether the door always opens completely with switch contact even if the operating mode "AU" winter is set.

11.2 Radio activation

- Follow installation instructions and user manual.
- Parameter setting of contact type with:
- DPS: Set E1, E2 or E3 to the required function ($8,9,10,11,14$).
- ST220: Set "input signals", "configurable inputs", "PE1 function", "PE2 function" or "PE3 function" to the required function.

Push button with transmitting module

WRM-24

- The receiving module WRM-24 can be activated with the transmitting module WTM.
- Transmitting module WTM, mat. no. 131212, for clipping into a plastic elbow switch.
- Follow the installation instructions for the wireless programme AUT.

11.3 Pharmacy opening

- Set function parameter for input used:

- During activation, 24 V is applied to the input.
- The pharmacy opening function is only active in the mif operating mode.
- Use a push button as the activation element.

11.4 Emergency lock

(1)

- Set parameter for input (terminal) used:
- With DPS: Set $E 1, E Z$ or $E \mathcal{E}$ to 07 .
- With ST220: Set "PE1-", "PE2-" or "PE3-function" to "emergency lock".

PE1PE2	
2	24 V
51	PE1

PE 1 PE 2
224 V
52 PE2

- The door closes and locks as soon as the contact is closed.
- 24 V are applied to the control.
- The door remains closed and locked as long as the contact is closed.
- When the emergency lock is active, the safety sensors "close" (SIS) and obstruction detection are not active.

12 WC control

```
(not with DCU1-2M)
```

(!

Setting the parameters with:

- DPS:
- Set E1, E2 or E3 to 21 (WC control), depending on the input used.
- Set A1 to 14 (LS).
- Set A2 to 24 (fault WC timeout) if monitoring of permanent locking is required (signal horn to the lodge)
- Set AC to 01 (open) or 03 (battery operation max. 30 minutes / 30 cycles, then open).
- ST220:
- Set "input signals", "PE1-function", "PE2-function" or "PE3 function" to "WC control".
- Set "output signals", "PA1 function" to "shop closing".
- Set "Door parameters", "Power failure not NA" to "open" or "30 min open".

Accessories:

- AS 500 switch unit with illuminated display for disabled WC, mat. no. 120882 (2 units required)
- Optional: SLH220, SIGNAL HORN, flush-mounted, AS 500, AW, COMPLETE, mat. no. 115939

Push button with illuminated display "occupied"

1 Inside push button (switch unit with illuminated display)

OCCUPIED
 Outside push button (switch unit with illuminated display)

Function

The control recognises the operating function "WC control" on the basis of the parameter set for the configurable input (PE1, PE2, PE3). If the WC is not occupied, the door is in automatic mode and is in the closed position. The OCCUPIED signs are off.
When the "outside push button" is activated, the WC door is opened. Once someone has entered the cubicle, the WC door is switched to shop closing mode by pressing the "inside push button" and the outside push button is blocked. The OCCUPIED signs light up. The drive keeps the door locked in the closed position by means of motor power. Pressing the "inside push button" again switches the operating mode back to automatic. The OCCUPIED signs go out. The door opens and the "outside push button" is cleared again.
When WCs are monitored for permanent locking, the "WC alarm" signal is triggered after 30 minutes and an acoustic signal (signal horn to the gate) is switched on. The time cannot be set.
In an emergency, the toilet door can be opened from the outside using the emergency opening switch. In the event of power failure, the door opens or remains in operation for max. 30 minutes or 30 cycles and then opens, depending on the AC parameter setting (power failure not NA).

Signal horn

PA1 PA2

1 Signal horn SLH220 to the lodge (optional)

Emergency opening switch

See "emergency opening switch", chapter 7 Contact sensor authorised.

13 Interlocking door system, vestibule

(1) X

- Two sliding doors use the same programme switch.
- The programme switch only indicates the fault messages of the first control.
- Interlocking door system: One door only opens if the other one is closed.
- Vestibule: Both doors run in the same mode of operation.
- Do not connect terminal 2. The programme switch is connected to the first control.
- Set parameters with DPS:
- First control: $51=00$
- Second control $51=0$ ifor interlocking door system $5 L=a E$ for vestibule

1 Control door 1
2 Control door 2

- Set parameters with ST220:
- First control: "Interlocking door system vestibule = Master"
- Second control: \quad Interlocking door system vestibule = Slave interlocking door system" for interlocking door system
"Interlocking door system vestibule = Slave vestibule" for vestibule

14 Mode of operation

- For sliding doors on rescue routes, the programme switch must be protected from unauthorised access e.g. by using a lockable version.
- The display programme switch DPS, the service terminal ST220 or GEZEconnects (mat. no. 133367) is required for setting control parameters and commissioning the door drive.

Symbol	Display	Explanation
OFF	OFF	SERVICE (only valid for mat. no. 151524 and 155810 in combination with DCU V3.3) The drive is switched to without function for service purposes. The door leaves can be moved freely by hand. Activation and safety sensors are without function. Drive motor and locking are switched off.
	nA	NIGHT The door is closed and locked. The door can only be opened while mode "contact sensor authorised (KB)" is active or via manual release.
	LS	SHOP CLOSING (one-direction operation from the inside to the outside) The door can be activated using contact sensor inside (KI) and contact sensor authorised (KB). The safety sensors "close" (SIS) are active. When activated, the door opens up to a reduced opening width set during commissioning.
	Au Winter	AUTOMATIC with reduced opening width. Activation is possible with contact sensor inside (KI), contact sensor outside (KA) and contact sensor authorised (KB). The safety sensors "close" (SIS) are active. When activated, the door opens up to a reduced opening width set during commissioning.
$\|+c c\| c$	do	PERMANENTLY OPEN The door is completely opened.
	Au Summer	AUTOMATIC with full opening width Activation is possible with contact sensor inside (KI), contact sensor outside (KA) and contact sensor authorised (KB). The safety sensors "close" (SIS) are active. When activated, the door opens up to full opening width.

14.1 Mechanical programme switch

The LED on the mechanical programme switch lights up after the service interval has expired or in the event of a fault.

- MPS, AS 500, mat. no. 113226
- MPS-ST, with key, AS 500, mat. no. 113227
- Accessories:
- Surface-mounted cap single, AS 500, mat. no. 120503
- Operating modes:

- Follow installation instructions, (mat. no. 122611).

- Set parameters for input/terminal PE2:
- With DPS: EE to 01 for MPS
- With ST220: "PE2-function" to "MPS"
- Set parameters for output/terminal PA1 and PA2:
- With DPS: Set 8 i or $8=04$ to for fault display MPS.
- With ST220: Set "PA1-" or "PA2-function" to "fault MPS".
- If the mechanical programme switch is used, it is not possible to change the operating mode using the keypad programme switch, display programme switch or the inputs $17,15,1, A_{1}$ and do.

14.2 Switching the operating mode using push buttons or switches

In addition, it is possible to change between the operating modes $n i, 8, i L, 15$, 60 and "OFF" using potential-free push buttons or switches.

- For the operating mode "OFF" the function parameter must be set for the input used.
If the drive is switched to the OFF operating mode, the door opens before the drive
 switches off.
- With DPS: Set $E 1, E 2$ or $E 3$ to 02 .
- With ST220: Set "PE1-", "PE2-" or "PE3-function" to "OFF".
- The control switches to the desired operating mode if the level switches from GND to 24 V at the corresponding input.
- Operation using the keypad programme switch or display programme switch is only possible if there is no signal pending at the inputs ini, Ru, 15 and do.
- Locking the door (changing to operating modenif) using a potential-free push button or switch is not possible for doors on rescue routes.

14.3 Keypad programme switch

- TPS, AS 500, flush-mounted, mat. no. 113231
- TPS SCT, AS 500, flush-mounted, with key push button, without profile half cylinder, mat. no. 113232

LEDs (1) for operating mode display indicate a fault code when a fault has occurred (see fault messages keypad programme switch). LED (2) lights up with reduced opening width.

- Operating modes:
- OFF, mil, 15, , \ln, do, Summer / Winter
- Operation of the programme switch can be blocked for unauthorised persons by using a key push button or assigning a password (see chapter 14.8).

! No TPS can be connected when PE2-function is "MPS" (only display possible).
- Follow installation instructions, mat. no. 122400.
- Accessories:
- Profile half cylinder, mat. no. 090176
- Additional contact, mat. no. 024467
- Surface-mounted cap single, AS 500, mat. no. 120503
- Surface-mounted cap double, AS 500, mat. no. 128609

14.4 Display programme switch (DPS) with OFF key

- AS 500, DPS with OFF, flush-mounted, alpine white, mat. no. 151524
- AS 500, DPS with OFF and SCT, with profile half cylinder, flush-mounted, alpine white, mat. no. 155810
- Operating modes: OFF, ni, i5, inu, do, Summer / Winter opening width
(!) Follow the installation instructions
- A DPS cannot be connected if the PE2-function is set to "MPS" (only display possible).
- Changing the operating with the DPS is only possible if 24 V are not applied to $n \mathrm{if}, \mathrm{LS}, \mathrm{RLL}_{\mathrm{L}}$, do or PE1 or PE2 if PE1, PE2 or PE3 is configured to OFF.
- Operation of the programme switch can be blocked for unauthorised persons by using a key push button or assigning a password (see chapter 14.8).
- Switching between summer/winter opening width:
- Press the $\boldsymbol{\Delta \nabla}$ keys simultaneously.
(! A maximum of one keypad programme switch can be connected to the control together with a maximum of one display programme switch.

The control can be configured using DPS.
See Service menu, chapter 22.2.

Accessories:

- Key push button SCT, single-pole, flush-mounted, AS 500 without profile half cylinder, mat. no. 117996
- Profile half cylinder, mat. no. 090176
- Additional contact, mat. no. 024467
- Surface-mounted cap single, AS 500, mat. no. 120503
- Surface-mounted cap double, AS 500, mat. no. 128609

14.5 Display programme switch (DPS) without OFF key

- AS 500, DPS without OFF, flush-mounted, alpine white, mat. no. 1515809
- Operating modes: $n B, i 5$, , L_{L}, do, Summer/ Winter opening width
(Follow the installation instructions.
- The DPS without OFF key does not have an OFF function.
- For further information see display programme switch (DPS) with OFF key.
- Accessories:
- Adapter frame, mat. no. 155851, for replacement of the old version DPS (mat. no. 103940) by DPS without OFF key.

14.6 Display programme switch, old version (mat. no. 103940)

The old version of the DPS can still be connected.
Connection and function as with the display programme switch without OFF key.

14.7 Reset function (DPS with OFF key, TPS)

In the OFF operating mode, the keys $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ can be pressed at the same time to trigger a software reset. The drive then behaves in the same way as after mains voltage switch-on and carries out initialisation. The parameter settings are not changed.

- The reset function is not possible with the DPS without OFF key.

14.8 Blocking or releasing operation of TPS and DPS

14.8.1 With additional key push button (1st possibility)

With automatic standard sliding doors

- Press the key push button briefly to block function.
- With the DPS, the operation lock is signalled by the display "- -" when any key is pressed.
- With the TPS, the operation block is signalled by the LED for the respectively set operating mode flashing once when any key is pressed.
- Press the key push button again briefly for release. Operation is then permanently released.

For automatic sliding doors on escape and rescue routes

- The key push button has to be activated permanently to unlock the operation.
- Operation is blocked as soon as the key push button is no longer pressed.
- With the DPS, the operation lock is signalled by the display "- -" when any key is pressed.
- With the TPS, the operation block is signalled by the LED for the respectively set operating mode flashing once when any key is pressed.

14.8.2 Release with password (2nd possibility)

This requires previous setting of the 2-digit password in the drive Service menu (factory setting: no password).

- For release on the TPS:
- Enter the first digit of the password by the number of times the key is pressed, with
- TPS: Key $\boldsymbol{\triangle}$
- DPS: Key fin
- Enter the second digit of the password by the number of times the key is pressed, with
- TPS: Key $\boldsymbol{\nabla}$
- DPS: Key do
- After the password has been entered, operation of the programme switch has been released.
- Operation is blocked automatically 2 minutes after the last key has been pressed. With the TPS, the operation block is signalled by the LED for the respectively set operating mode flashing once when any key is pressed. With the DPS, the operation lock is signalled by the display "- -" when any key is pressed.

14.8.3 Permanent release of programme switch operation

- For permanent release, either fit a jumper between terminals 1-44 of the TPS or DPS
or
- set the value " 00 " (factory setting) as the password in the Service menu.

15 Configurable outputs

The control indicates various states via the two configurable outputs PA1 and PA2 (see Service menu). The outputs must be configured accordingly.

15.1 PA1 (gong)

PA1 is a potential-free relay contact, switching voltage/current max. $24 \mathrm{~V} \mathrm{AC} / \mathrm{DC} / 0.5 \mathrm{~A}$.

- Set parameters for the gong function:
- With DPS: Set $\boldsymbol{R} \boldsymbol{i}$ or $R E$ to 0 i.
- With ST220: Set "PA1-" or "PA2-function" to "Gong".

The contact closes as soon as SIS1 or SIS2 is activated.

15.2 PA2 (fault, fan)

PA2 is a transistor output, switching voltage/current max. 24V DC / 0.5 A.

- Set parameters for fault indication:
- With DPS: Set A ior $A E$ to 02 .
- With ST220: Set "PA1-" or "PA2-function" to "Fault closer".

The output switches to GND as soon as the control detects a system fault. At the same time, the corresponding fault number is displayed on the display programme switch or keypad programme switch.

- A relay for galvanic isolation must be installed for forwarding the fault message (e.g. to a building management system).
- Set parameters for the use of a fan for cooling the motor:
- With DPS: Set 8 i or 82 to 07 .
- With ST220: Set "PA1-" or "PA2-function" to "Motor fan".
- Motor fan for Slimdrive, mat. no. 80533
- Motor fan for Powerdrive, mat. no. 123394

16 Mains connection

- Transformer for Slimdrive, mat. no. 106194
- Transformer for ECdrive, mat. no. 106530
- Transformer for Powerdrive, mat. no. 117975

[^3]
17 Locking

17.1 Locking by toothed belt

- Locking by toothed belt Slimdrive SL, SLT, SL NT, mat. no. 114004
- Locking by toothed belt Slimdrive SC, mat. no. 105275
- Locking by toothed belt ECdrive, mat. no. 117766
- Locking by toothed belt Powerdrive, mat. no. 114000

- Shown in unlocked state.
- Switch S3, mat. no. 019080, can be installed optionally, switching voltage/current max. $24 \mathrm{~V} \mathrm{AC/DC} \mathrm{/} 0.5 \mathrm{~A}$.
- In the locked state, switches S1 and S3 are activated and the contact of switch S1 is opened.

17.2 Rod locking, break axle

- Rod locking Slimdrive SL, SLT, mat. no. 105680
- Break axle Slimdrive SF, mat. no. 107574

- Shown in unlocked state.
- Switches S3 and S4, mat. no. 105684, can be installed optionally with break axle, switching voltage/current max. $24 \mathrm{~V} \mathrm{AC/DC/0.5} \mathrm{A}$.
- In the locked state, switches S1 and S3 are activated, the contacts of switches S1 and S3 and the contacts of switches S2 and S4 are opened.
i
The following rod lockings are used for drives with RC2:
- 2-leaf SL RC2, without potential-free contact
mat. no. 134044
- 2-leaf SL RC2, with potential-free contact mat. no. 136105
- 2-leaf SLC RC2, with potential-free contact
- 1-leaf, right closing SL RC2, with potential-free contact
- 1-leaf, left closing SL RC2, with potential-free contact

17.3 Hook bolt Lock A

- Hooked locking device Lock Basis 1 HRS, mat. no. 156679
- Depending on the drive, number of leaves and direction of closing movement, the following accessories are used:
- Lock A Integration EC 2-leaf, 1-leaf, right, mat. no. 153658
- Lock A Integration EC 1-leaf left, mat. no. 153660
- Lock A Integration SL NT 2-leaf, 1-leaf right, mat. no. 153671
- Lock A Integration SL NT 1-leaf left, mat. no. 153672

Set the parameters with:

	Parameter	Value	Description
DPS	E2	20	Manual unlocking
	Rt	05	Lock A, hook bolt lock
ST220	Door parameters \backslash electric locking	Lock A	Hook bolt lock
	Input signals \backslash PE2	Lock A	Manual unlocking

Shown in "unlocked" state

```
Rod contacts (Lock A Integration)
Bolt B
Bolt A
Locked
5 Unlocked
6 Manually unlocked
```


18 Rechargeable battery

Rechargeable battery, mat. no. 106863

- Voltage in charged state: $\geq 26 \mathrm{~V}$ (with rechargeable battery unplugged).

19 Motor

(
Motor 1: Motor DCU1, mat. no. 105009.

i
 现

Motor 2: Only with tandem motor DCU1-2M, mat. no. 102517.

20 Control

(
Control DCU1, mat. no. 105010
Terminal bag, mat. no. 106047.

Control DCU1-2M, mat. no. 105011. Terminal bag, mat. no. 106047.

- DCU100:
- F1 24 V EXT (1.25 AT, $5 \times 20 \mathrm{~mm}$)
- F2 AC IN (6.3 AT, $5 \times 20 \mathrm{~mm}$)
- F3 rechargeable battery (6.3 AT, $5 \times 20 \mathrm{~mm}$)
- RUN Run-LED
- DCU101:
- F4 AC IN (6.3 AT, $5 \times 20 \mathrm{~mm}$)
- F5 rechargeable battery (6.3 AT, $5 \times 20 \mathrm{~mm}$)
\square CAN

- DCU103
- 1-2 CAN terminating resistance inactive
- 2-3 CAN terminating resistance active
- RUN-LED
- LED on: Everything OK.
- LED flashes slowly (0.25 Hz): Drive not taught.
- LED flashes quickly (2 Hz): Fault.

21 Commissioning and service

Commissioning and service can be carried out using the display programme switch DPS or the service terminal ST220.

21.1 Production test

The production test is used for functional testing of the power supply, control, motor, rechargeable battery and locking assembly groups (if present). The production test is carried out on the drive before it is installed on the wall and without sliding leaves.

. DANGER

Danger of fatal injury due to electric shock.

- Interrupt power supply.
- Connect power supply to 230 V AC and use an r.c.c.b.
- Connect the rechargeable battery.
- Lock the lock (if present) by hand. The bolt comb must fully engage in the toothed belt.
- Connect the display program switch DCU1.

(1)
 国

- Connect terminals 1 and 44 of the display programme switch.
- Reset the control to factory settings using $[P$, display programme switch indicates $L E$.
- Press the service key and $\boldsymbol{R}_{\mathrm{L}}$ simultaneously (see Service menu, operation DPS), the production test starts:
- PI Locking unlocked.
- P3 Motor rotates approx. 20 cm in one direction and then approx. 20 cm in the other direction.
- PE Locking locked.
- PG Test of whether a rechargeable battery is connected.
- 90 Rechargeable battery not detected.
- 8 i Rechargeable battery detected.
- If a rechargeable battery is connected, it must be detected. It is only checked whether the rechargeable battery is present and not whether the charge state of the battery is sufficient.
- If a fault occurs during the production test, the test is aborted and the fault displayed.
- Press the - key.
- With ST220, start the production test via the Service menu under the item "Start production test \rightarrow yes".
- Unplug the rechargeable battery after the production test and leave it unplugged until commissioning.

21.2 Commissioning

21.2.1 Assembly and installation

- Installation is complete (see installation instructions of the corresponding sliding door drive).
- Sensors are correctly configured and aligned.
- Clear the sensor detection field.
- Electrical installation is complete. There are no cables in the travel path of the leaves and drivers. All cables have been secured with cable ties.
- Push leaves by hand from the closed position into the completely open position and back again. It must be possible to move them freely (movement force less than 100 N).
- Align lock. When the leaves are completely closed, the lock must be easy to lock and unlock by hand.

21.2.2 Commissioning with DPS

CAUTION

Danger of injury by opening door leaves during commissioning.

- Switch off all safety devices.
- Step out of the travel path.
- If not yet installed, connect the display programme switch.

A keypad programme switch or mechanical programme switch that is already connected will not interfere with commissioning with the display programme switch.

0
 国

- To commission a sliding door on rescue routes, terminals 1 and 44 of the display programme switch must be connected or the connected key push button must be activated.
- If a sliding door on a rescue route is to be operated with reduced opening width, connect terminals 2 and 6 on the control DCU1-2M. For sliding doors on rescue routes, the reduced opening width must correspond to at least the required escape route width.
- Plug the rechargeable battery into the control.
- Switch on 230 V at the transformer.
- After power supply has been restored, a brand-new control indicates the function $L E$ on the display programme switch, whereas a control that has already been in operation will indicate the mode of operation last used before the voltage supply was switched off.
- Configure control, in particular:
- Sit Drive type
- EF Number of door leaves
- rit Bolt type
- [. Contact sensor inside
- $51, F i, 52, F 2,53, F 3,54, F 4$ safety sensors (function and contact type)
- Close the door up to approx. 5 cm .
- Select the function $L E$ in the Service menu.
- Teach the control by pressing the enter key.

CAUTION

The leaves accelerate quickly when the leaf mass is being determined.

- Step out of the travel path.
- The door leaves open and close several times. The control determines the following parameters:
- 10 Start teaching
- Li Test the rotary transducer
- 13 Opening width, closing position
- $\quad L 2$ Locking by toothed belt
- 18 Friction
- 14 Leaf mass
- LE Reduced opening width (with control DCU1-2M only when a jumper is connected to set the reduced opening width on terminal strip PS between terminal 6 (NA) and terminal $2(+24 \mathrm{~V})$)
- The leaves come to a standstill with 2.5 .
- Push the leaves by hand to the required reduced opening width and confirm (\downarrow).

For doors on rescue routes, the reduced opening width must be larger than or the same size as the required escape route width (construction approval). The control limits the reduced opening width to at least 30 percent of the maximum opening width.

- Automatic takeover of the current position occurs after 20 sec . only with control DCU1.
- 17 End of teaching
- Conform to store the values determined (\hookleftarrow).
- If a fault occurs, the teaching process is aborted with the message EL.
- Display the faults by pressing Er, eliminate the cause and start teaching again.
- Remove the connection between terminals 2 and 6 of the control again.
- Change to operating mode.
- After a brand-new control has been taught, it automatically changes to operating mode Ril.
- Check the running behaviour of the door and adjust other parameters if necessary.
- Clear fault memory of.
- Unplug display programme switch if necessary.

21.2.3 Commissioning with ST220

CAUTION

Danger of injury from moving door leaves.

The door leaves move during commissioning.

- Step out of the door leaf travel path.
- If a sliding door on a rescue route is to be operated with reduced opening width, connect terminals 2 and 6 on the control DCU1-2M.
- For sliding doors on rescue routes, the reduced opening width must correspond to the prescribed escape route width.
- Plug the rechargeable battery into the control.
- Switch on 230 V at the transformer.

After power supply has been restored, a brand-new control indicates the function non-taught initialisation on the ST220. A control that has already been in operation will indicate the mode of operation last used before the voltage supply was switched off.

- Configure control, in particular:
- Number of leaves

Number of door leaves

- Drive type
- Locking electric Type of drive
Bolt type
- KI

Type of contact and delay contact sensor inside

- SI1, SI2, SI3, SI4 Type of contact and function of the safety sensors
- Close the door up to approx. 5 cm .
- Teach the drive by selecting "Start teaching -> yes".
- The door leaves open and close several times. The control determines the following parameters:
- Teaching programme rotary transducerCheck the rotary transducer
- Teaching programme opening width Opening width, closing position
- Teaching programme bolt test Toothed belt locking
- Teaching programme movement force Movement force / friction
- Teaching programme acceleration Leaf mass (the leaves accelerate quickly)
- Red. opening width learning prog. With control DCU1-2M only when a jumper is connected to set the reduced opening width on terminal strip PS between terminal 6 (NA) and terminal $2(+24 \mathrm{~V})$. The leaves come to a standstill in the teaching programme "reduced opening width".
- Push the leaves to the required reduced opening width and confirm (\hookleftarrow) (automatic takeover of the current position after 20 s only with DCU1).
For doors on rescue routes, the reduced opening width must be larger than or the same size as the required escape route width (construction approval). The control limits the reduced opening width to at least 30 percent of the maximum opening width.
- Teaching programme quit teaching End of teaching
- Conform to store the values determined (\downarrow).

If a fault occurs, teaching is aborted with the message "fault during teaching".

- Display the fault in the menu item "fault memory-current faults", eliminate the cause and start teaching again.
- Remove the connection between terminals 2 and 6 of the control again.
- Change to operating mode. After a brand-new control has been taught, it automatically changes to operating mode AU.
- Check the running behaviour of the door and adjust other parameters if necessary.
- Clear the fault memory.
- Unplug ST220.

21.2.4 Functional check for the automatic sliding door

- Switch off drive at power switch and wait until battery relay switches off.
- Switch the drive back on at the mains switch.
- Self-test runs.
- With the ST220, choose the operating mode OFF or with DPS clear the motor Fr.
- Mount drive hood and turn locking pin back in if necessary.
- With the ST220 select the operating mode Fiw or with DPS switch the motor on Fo.
- Check function and detection field of all safety sensors "close".
- Check function and detection field of all safety sensors "open".
- Check the function of all contact sensors.
- Check locking by changing to operating modenif and unlocking by changing to operating mode $\boldsymbol{F i n}_{\mathrm{L}}$.

21.2.5 Commissioning the interlocking door system and vestibule

Both controls are commissioned like two individual controls
During the commissioning of one control, the other must be separated from the power supply.

- Set parameters, see Chapter 14 Interlocking door system, vestibule.
- Switch off both controls.
- A programme switch is only connected to the first control.
- Switch both controls on within 50 s .

21.2.6 Documentation

- Create test log.
- Carry out safety analysis and enter installed safety options into the safety analysis.
- Supplement classification on identification plate.

21.3 Service

21.3.1 Service with DPS

The drive must be re-taught after changes have been made, particularly after the opening width has been changed.

- Check function and correct setting of all safety sensors.
- Check function and correct setting of all activation sensors.
- Read out number of cycles and operating duration (menu item 5if).
- Note faults in the fault memory Er and oE.
- Clear fault memory of.
- Reset service display (55).

21.3.2 Service with ST220

The drive must be re-taught after changes have been made, particularly after the opening width has been changed.

- Check function and correct setting of all safety sensors.
- Check function and correct setting of all activation sensors.
- Read out number of cycles and operating duration: - Menu item "Diagnosis \rightarrow current values \rightarrow internal values \rightarrow cycles/operating hours"
- Read out fault memory and note faults:
- Menu item "Diagnosis \rightarrow fault memory \rightarrow current faults / old faults"
- Select fault with * and confirm with (-). Cause of fault is displayed.
- Clear fault memory:
- Menu item "Diagnosis \rightarrow clear fault memory"
- Reset service display:
- Menu item "Diagnosis \rightarrow clear maintenance \rightarrow yes"

22 Service menu

22.1 Service terminal ST220

- Service terminal ST200, mat. no. 087261
- The drive can be commissioned with service terminal ST220, software version from v2.1.

22.1.1 Operation of ST220

Key Function

- Cursor upwards

Increase number value
Scroll upward (if key is pressed longer than 2 s)
Cursor downwards
Decrease number value
Scroll downward (if key is pressed longer than 2 s)
$\times \quad$ Cancel input
Any input can be aborted by pressing the key x. The input position then changes to the first menu position or one menu level back.

Select
Update display.
Accept new value

Display immediately after connection

GE Z E
Service terminal
2.1
XXXXXYWWJJZZZZZZZV

Software version ST220 v2.1
Serial number ST220

22.1.2 Service mode ST220

- The switch to service mode occurs with connection of the service terminal to DCU1.
- Service is possible in operating modes LS, AU and DO.
- In service mode, the door remains in operation in the current operating mode (not with teaching activated or with Fo display).

Display after connection to the door control

SL NT $\mathbf{3 . 3}$ D1 DCU1_2M $\mathbf{1 . 6}$ D1 Automatic Summer Static	Drive type DCU100 Software version V3.3, hardware version D1	Additional PCB DCU101

22.1.3 Password prompt ST220

If a password has been assigned in the menu "Diagnosis", "Change password", "Service 1 ", this is requested before the service menu can be entered.

$$
\begin{aligned}
& \text { Password } \\
& \text { 0--- } \\
& \text { * }
\end{aligned}
$$

[^4]
22.1.4 Service menu ST220

Mode of operation

Designation	Setting values		Explanation
	8		
Mode of operation	OFF Night Shop closing Automatic Permanently open	OFF Night Shop closing Automatic Permanently open	Current operating mode is displayed and can be changed. If an MPS is connected, it is not possible to change the operating mode via the ST220.
Season	Summer Winter	Summer Winter	Full opening width Reduced opening width
Open doors	A - Key		

Door parameters

Designation	Setting values		Explanation
No. of leaves	Close on one side Close centrally	Close on one side Close centrally	-
Drive typ	Unknown Slimdrive SC Slimdrive SF Slimdrive SL Slimdrive SL NT Slimdrive SL BO Slimdrive SL CO48 Slimdrive SLT Slimdrive SLV ECdrive ECdrive CO48 Powerdrive PL ECdrive BO TSA 360NT BO Powerdrive PL CO48 Slimdrive SL NT-CO48 Slimdrive SLT-CO48	Unknown Slimdrive SC Slimdrive SF Slimdrive SL Slimdrive SL NT Slimdrive SLT Slimdrive SLV ECdrive Powerdrive PL	-
Drive serial no.	000000000000	000000000000	12-digit serial number Current input position is marked with an asterisk. Select input position using $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ and confirm using $ب$ Then select number using $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ and confirm using $ب$
Maintenance message after operating time	0,1.. $12 \ldots 99$	0, $1 \ldots 12 \ldots 99$	months 0 : no maintenance message
Maintenance message after cycles	$\begin{aligned} & 0,100,000 \ldots \\ & \mathbf{5 0 0}, 000 \ldots 3,000,000 \end{aligned}$	$\begin{aligned} & 0,100,000 \ldots \\ & \mathbf{5 0 0}, \mathbf{0 0 0} \ldots \\ & 3,000,000 \end{aligned}$	Cycles 0: no maintenance message Cycle: open from closed position and close completely again. For DCU1-RD: Maintenance message presetting after 200,000 cycles.
Interlocking door system, vestibule	Master Slave interlocking door system Slave vestibule	Master	Interlocking door system and vestibule: The same programme switch is used for two doors (DPS, TPS, MPS). Interlocking door system: Two doors - one only opens when the other is closed.
Power failure NA	No function Open	No function Open	-

Movement parameters

Designation	Setting values	Explanation
Opening speed	$0304 \ldots 10$ 12... $2025 \ldots 50 \ldots 80 \mathrm{~cm} / \mathrm{s}$	Speed during opening *)
Closing speed	$0304 \ldots 1012 \ldots 2025 \ldots 80 \mathrm{~cm} / \mathrm{s}$	Speed during closing *)
Latching action open	$0001 \ldots 07 \mathrm{~cm} / \mathrm{s} \quad 0001 \ldots 07 \mathrm{~cm} / \mathrm{s}$	Final speed in the open position
Latching action closed	$0001 \ldots 07 \mathrm{~cm} / \mathrm{s} \quad 0001 \ldots 07 \mathrm{~cm} / \mathrm{s}$	Final speed in the closed position
Reduced profile	None None	No reduced speed
	Open and closed Open and closed	Reduced speed before open position and closed position
	Open Open	Reduced speed before open position
	Closed Closed	Reduced speed before closed position
Acceleration	$1 \ldots 20 \ldots 30 \times 10 \mathrm{~cm} / \mathrm{s}^{2}$	Acceleration and braking during opening and closing *)
		*) The maximum speed and acceleration depend on the door weight and friction.
Stat. force open	1020...150... 250 N	Maximum static force during opening
Stat. force close	1020...150... 250 N	Maximum static force during closing WARNING! EXI602 Forces greater than 150 N can lead to serious physical injuries and are not permit- ted as per DIN 18650/EN 16005.

- Note that forces exceeding 150 N are only permitted if additional safety measures are taken.

Permanent closing pressure	$0001 \ldots 1012 \ldots 202590 \mathrm{~N}$	Force with which the drive presses on the door leaf in the closed position.
Initial closing pressure	$0001 \ldots 1012 \ldots 2025 \ldots 120 \ldots 150 \mathrm{~N}$	Initial closing pressure helps the door leaf slide into a rubber seal. It is applied for 0.7 sec. as soon as the closed position has been reached.
Summer hold-open time	$0001 \ldots 1012 \ldots 2025 \ldots 60 \mathrm{~s}$	-

Designation	Setting values	Explanation
Winter hold-open time	$0001 \ldots 1012 . .2025 \ldots 60 \mathrm{~s}$	-
Hold-open time contact authorised	$0001 \ldots 1012 . .2025 . . .60$ s	-
Dyn. extension of hold-open time	No No Yes Yes	Dynamic extension of hold-open time refers to the summer and winter hold-open times. If the door cannot close fully between 10 successive activations, the hold-open time is increased by one second, repeatedly if necessary. Once the door can close fully again, the configured hold-open time is used again.
Reversing limit	0102...06... 10 12... 2025 mm	If the distance between the door leaves (single leaf: the distance between leaf and side part) during closing is smaller than the reversing limit, the door does not reverse if it hits an obstacle. It stops at the obstacle.

Input signals

| Safety sensors | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Designation | Setting values | | | |

Activation sensors

Designation	Setting valu		Explanation	
KB current state	Indication of state, contact type		Contact sensor authorised	
KB contact type	Not used Closer	Not used Closer	-	
KI current state	Indication of state, contact type and activation delay		Contact sensor inside	
KI contact type			Voltage	Movement detector with voltage output
	Opener Voltage Frequency	Opener Voltage Frequency	Frequency	Movement detector with frequency output
KI delay	0 1... 10 s	0 s	-	
KA current state	Indication of state, contact type and activa- Contact sensor outside tion delay			
KA contact type	Not used Closer Opener Frequency	Not used Closer Opener Frequency	-	
KA delay	$01 . . .10$ s	0 1... 10 s	-	

Operating mode switchover			
Designation	Setting values		Explanation
		$\underset{\sim}{x}$	
NA current state	Indication of state and contact type	-	Night; the operating mode cannot be changed as long as this is active.
NA contact type	Not used Closer Opener	Not used	-
LS current state	Indication of state and contact type		Shop closing; the operating mode cannot be changed as long as this is active.
LS contact type	Not used Closer Opener	Not used Closer Opener	-
AU current state	Indication of state and contact type		Automatic; the operating mode cannot be changed as long as this is active.
AU contact type	Not used Closer Opener	Not used Closer Opener	-
DO current state	Indication of state and contact type		Permanently open; the operating mode cannot be changed as long as this is active.
DO contact type	Not used Closer Opener	Not used Closer Opener	-

Configurable inputs						
Designation	Setting values		Explanation			
	\star					
PE2 function	Not used MPS	Not used MPS		P-KI activation	Only active in operating mode LS and AU (like KI).	
	OFF	NO OFF	NO	P-KA activa-	Only active in operating mode AU (like KA).	
	Summer	NO Summer	NO	tion		
	Winter	NO Winter	NO	Push button	The first flank opens completely, the next flank closes the door.	
	Sabotage	NC Sabotage	NC			
	Pharmacy	NO Pharmacy	NO	OHZ push button	The first flank opens completely, the next flank closes the door. If the	
	Emergency lock	NO Emergency lock	NO			
	P-KI activation	NO P-Kl activation	NO		hold-open time for contact sensor authorised expires while the door is open, the door closes automatically.	
	P-KA activation	NO P-KA activation	NO			
	Push button	NO Push button	NO			
	OHZ push button	NO OHZ push button	NO	KI2	If the contact type KI is configured as	
	Reset push button	NO Reset push button	NO		opener for DCU1-2M, PE3 is the second contact sensor input and cannot be configured freely.	
	Double push	Double push				
	button	NO button	NO			
	Manual unlocking	NO Manual unlocking	NO			
	WC control	NO				
PE3 current state	Indication of state and function			Reset push button	The control is rebooted.	
PE3 function	Not used				Press 1x:	reduced opening width full opening width
		Not used KI2	NO	Double push button		
	OFF	NO OFF	NO		Press $2 \times$:	
	Summer	NO Summer	NO			
	Winter	NO Winter	NO			
	Sabotage	NC Sabotage	NC			
	Pharmacy	NO Pharmacy	NO			
	Emergency lock	NO Emergency lock	NO			
	P-KI activation	NO P-Kl activation	NO			
	P-KA activation	NO P-KA activation	NO			
	Push button	NO Push button	NO			
	OHZ push button	NO OHZ push button	NO			
	Reset push button	NO Reset push button				
	Double push	Double push				
	button	NO button	NO			
	WC control	NO				

Output signals

Configurable outputs				
Designation	Setting values		Explanation	
	\star	$\stackrel{\square}{4}$		
PA1 current state	-		Gong	Active if an SIS is activated in AU, LS or DO.
PA1 function	Not used Gong	Not used	Fault	Collective fault message
		Gong	Fault MPS	For activation of the LED on the MPS: - Collective fault message - Maintenance message
	Fault closer	Fault closer		
	Fault MPS	Fault MPS		
	Warn	Warn	Warn	Active if the door continues moving despite active safety device at reduced speed.
	Motor brake Motor fan	Motor fan		
	Locked closed	Locked closed	Motor brake	CO48 pre-setting with drive SL CO48 and ECdrive CO48.
	Closed	Closed		
	Not closed	Not closed		0.7 s after the closed position has been reached, the motor brake is energised to hold the rubber cable (relieves motor).
	Open	Open		
	Off	Off		
	Night	Night		
	Shop closing	Shop closing	Motor fan	Active if motor temperature is higher than $67^{\circ} \mathrm{C}$
	Automatic	Automatic		
	Permanently open	Permanently open	Open	Active if leaf is in current open position
	Light control	Light control		
	Opens		Light control	Output is active following activation for the duration of activation +1 s .
	Does not open			
	Maintenance due	Maintenance due F-manual unlocking F-WC timeout		
	F-manual unlocking		F-manual unlocking	Manual unlocking Lock A activated
	F-WC timeout			
			F-WC timeout	WC locked for longer than 30 minutes
PA2 current status	-		Opens	Interlocking door system can be entered
PA2 function	Not used	Not used	Does not open	Interlocking door system is in use and can not be entered
	Gong	Gong		
	Fault closer	Fault closer		
	Fault opener	Fault opener		
	Fault MPS	Fault MPS		
	Warn	Warn		
	Motor brake			
	Motor fan	Motor fan		
	Locked closed	Locked closed		
	Closed	Closed		
	Not closed	Not closed		
	Open	Open		
	Off	Off		
	Night	Night		
	Shop closing	Shop closing		
	Automatic	Automatic		
	Permanently open	Permanently open		
	Light control	Light control		
	Opens			
	Does not open			
	Maintenance due	Maintenance due		
	F-manual unlocking	F-manual unlocking		
	F-WC timeout	F-WC timeout		

Diagnosis

Designation	Setting values	Explanation
Current values	SI1, SI2, SI3, SI4 STOP KB, KI, KA NA, LS, AU, DO PE1, PE2, PE3 Bolt 1, bolt 2	V
	PA1, PA2 Bolt TST	V
	current Position current Motor current Mains voltage Battery voltage 24 V internal DCU100 temperature DCU101 temperature Motor DCU100 temperature Cycles Operating hours Tests	mm A on/off V V ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ Hours
Current states	$\begin{aligned} & \text { SI1, SI2, SI3, SI4 } \\ & \text { STOP } \\ & \text { KB, KI, KA } \\ & \text { NA, LS, AU, DO } \\ & \text { PE1, PE2, PE3 } \\ & \text { Bolt 1, bolt } 2 \\ & \hline \text { PA1, PA2 } \\ & \text { Bolt } \\ & \text { TST } \end{aligned}$	The logical state of the signal is displayed (active, inactive, fault).
Fault memory	Current faults Old faults	Ser. no., fault text, fault number Select fault marked by * and press the \downarrow key, reason for fault will be displayed.
Clear fault memory	Clear current faults Clear old faults	-
Configuration	Opening width Bolt type Rechargeable battery Leaf mass	left/right, mm without/700 mAh kg
	Type Date of manufacture Time of manufacture	-
Start production test	yes/no	
Start teaching	yes/no	
Factory setting	yes/no	
Clear maintenance	yes/no	Clear maintenance display

22.2 Display programme switch (DPS)

The DPS can be used for commissioning and service.

- for changing the drive parameters
- for "teaching" the drive
- for diagnosis

| Key | | Function in service mode |
| :--- | :--- | :--- | :--- |

Scroll function (DPS with OFF key, DPS without OFF key)
In the Service menu, it is possible to scroll through the menu or value settings by pressing the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ keys.

22.2.1 Service mode DPS

- It is possible to change to the service mode in the operating modes oFF, $15, R_{1}$ and do.
- If no key is pressed for 5 minutes in service mode, the system automatically changes to operating mode (not when $F o$ is displayed).
- In service mode, the door remains in operation in the current operating mode (not with teaching activated or with Fo displayed).

22.2.2 Service menu DPS

$1^{\text {st }}$ menu

Display	Explanation	Setting values	
4	Opening speed	$0304 . .10$ 12... 20 25... 5080	cm/s*)
U	Closing speed	$0304 . .10$ 12... $2025 . . .5080$	$\mathrm{cm} / \mathrm{s}^{*}$)
50	Latching action open	$0001 \ldots 07 \mathrm{~cm} / \mathrm{s}$	
51	Latching action closed	$0001 \ldots 07 \mathrm{~cm} / \mathrm{s}$	DCU1-RD: 1 ... 10 ... 14
of	Summer hold-open time	$0001 . . .10$ 12... $2025 . . .60$ s	
or	Winter hold-open time (reduced opening width)	$0001 . .1012 . .2025 . . .60$ s	
05	Hold-open time contact authorised	$0001 . . .1012 . .2025 . . .60$ s	
od	Dynamic extension of the hold-open time	$\mathbf{0 0}$ no 01 yes	
60	Acceleration	$1 \ldots 1012 \ldots 2025 \ldots 30 \times 10 \mathrm{~cm} / \mathrm{s}^{2} \text { *) }$ (multiply value displayed by 10)	
ur	Reduced profile	$\mathbf{0 0}$ no reduced speed reduced speed before open position and before closed position 02 reduced speed before open position 03 reduced speed before closed position	
$F 0$	Static force open	$0110152025 \times 10 \mathrm{~N}$ (multiply value displayed by 10)	DN18650
$F[$	Static force closed	$\begin{aligned} & 0110152025 \times 10 \mathrm{~N} \\ & \text { (multiply } \\ & \text { value displayed by } 10 \text {) } \end{aligned}$	WARNING! EX16005 Forces greater than 150 N can lead to serious physical injuries and are not permited as per DIN 18650/EN 16005. Note that forces exceeding 150 N are only permitted if additional safety measures are taken.

$[F$	Permanent closing pressure	$\mathbf{0 0} 01 \ldots 1012 \ldots 2025 \ldots 5060 \ldots 90$
G	Reversing limit	$0102 \ldots \mathbf{0 6} \ldots 1012 \ldots 2025 \mathrm{~mm}$
CE	Switch to $2^{\text {nd }}$ menu	-
		$\left.{ }^{*}\right)$
		The maximum speed and acceleration depend on the door weight and friction.

Display	Explanation	Setting values					
$E 1$	Configurable input 1	00 not used			00 not used		
		02	Operating mode OFF	NO	02	Operating mode OFF	NO
		03	Summer	NO	03	Summer	NO
		04	Winter	NO	04	Winter	NO
		05	Sabotage	NC		Sabotage	NC
		06	Pharmacy	NO	06	Pharmacy	NO
			Emergency lock	NO			
		08	P-KI activation	NO	08	P-KI activation	NO
		09	P-KA activation	NO	09	P-KA activation	NO
		10	Switch function	NO		Switch function	NO
		11	Switch function, close to 9	NO		Switch function, close to 05	NO
		13	Reset push button	NO		Reset push button	NO
		14	Double push button	NO	14	Double push button	NO
		21	WC control	NO			
$E 2$	Configurable input 2	00	not used		00 not used		
			MPS		01	MPS	
		02	Operating mode OFF	NO		Operating mode OFF	NO
		03	Summer	NO		Summer	NO
		04	Winter	NO	04	Winter	NO
		05	Sabotage	NC		Sabotage	NC
		06	Pharmacy	NO		Pharmacy	NO
		07	Emergency lock	NO			
		08	P-KI activation	NO	08	$\mathrm{P}-\mathrm{KI}$ activationNO	
		09	P-KA activation	NO		P-KA activation	NO
		10	Switch function	NO		Switch function	NO
		11	Switch function, close to 05	NO		Switch function, close to os	NO
		13	Reset push button	NO		Reset push button	NO
			Double push button	NO		Double push button	NO
		20	Manual unlocking	NO	20	Manual unlocking	NO
		21	WC control	NO			
$E 3$	Configurable input 3		not used		00 not used		
						Contact sensor inside 2	NO
		02	Operating mode OFF	NO		Operating mode OFF	NO
		03	Summer	NO		Summer	NO
		04	Winter	NO		Winter	NO
		05	Sabotage	NC		Sabotage	NC
		06	Pharmacy	NO		Pharmacy	NO
			Emergency lock	NO			
		08	P-KI activation	NO	08	$\mathrm{P}-\mathrm{KI}$ activationNO	
		09	P-KA activation	NO	09	P-KA activation	NO
		10	Switch function	NO	10	Switch function	NO
		11	Switch function, close to 05	NO		Switch function; close to 05	NO
		13	Reset push button	NO		Reset push button	NO
		14	Double push button	NO		Double push button	NO
			Manual unlocking	NO		Manual unlocking	NO
			WC control	NO			

Display	Explanation	Setting values			
		$\ddot{\star}$			
Ri	Configurable output 1	00	not used	00	not used
		01	Gong		Gong
		02	Fault closer	02	Fault closer
		03	Fault opener	03	Fault opener
		04	Fault for MPS		Fault for MPS
		05	Warning signal	05	Warning signal
		06	Motor brake		
		07	Motor fan	07	Motor fan
		08	Closed and locked	08	Closed and locked
		09	Closed	09	Closed
		10	Not closed	10	Not closed
		11	Open	11	Open
		12	OFF	12	OFF
		13	NA	13	NA
		14	LS	14	LS
		15	AU	15	AU
		16	DO	16	DO
		17	Light control	17	Light control
		18	Opens when activated		
		19	Does not open when acti-		
		20	vated	20	Maintenance due
		21	Maintenance due	21	Manual locking fault
		24	Manual locking fault WC timeout fault	24	WC timeout fault
82	Configurable output 2	00	not used	00	not used
		01	Gong	01	Gong
		02	Fault closer	02	Fault closer
		03	Fault opener	03	Fault opener
		04	Fault for MPS	04	Fault for MPS
		05	Warning signal	05	Warning signal
		06	Motor brake		
		07	Motor fan	07	Motor fan
		08	Closed and locked	08	Closed and locked
		09	Closed	09	Closed
		10	Not closed	10	Not closed
		11	Open	11	Open
		12	OFF	12	OFF
		13	NA	13	NA
		14	LS	14	LS
		15	AU	15	AU
		16	DO	16	DO
		17	Light control	17	Light control
		18	Opens when activated		
		19	Does not open when acti-		
		20	vated	20	Maintenance due
		21	Maintenance due	21	Manual locking fault
		24	Manual locking fault WC timeout fault	24	WC timeout fault
nE	Switch to 3rd menu	-		-	

3rd Menu

Display	Explanation	Setting values		
				\bigcirc
Er	Currently pending faults	CE	Clear fault memory	Clear fault memory
OL	Old faults (the last 10 faults)	CE	Clear fault memory	Clear fault memory
dil	Diagnosis	r0	Without lock	r0 Without lock
		r1	With lock	r1 With lock
		A0	Without battery	A0 Without battery
			With battery	A1 With battery
		xx	Leaf weight ($\times 100 \mathrm{~kg}$)	xx Leaf weight (x 100 kg)
			+ leaf weight (x kg)	yy + leaf weight (x kg)
51	Control type	00	DCU1	20 DCU1-2M
		01	DCU1-RD *	21 DCU1-2M-DUO *
		02	DCU1-T30*	22 DCU1-2M-LL*
				23 DCU1-2M-RWS *
			* Special software	
597	Operating duration (6-digit display)	Co	Number of cycles / 100	Co Number of cycles / 100
			Operating hours / 4	Ho Operating hours / 4
		Fo	Number of self-tests	Fo Number of self-tests
55	Switch off Service LED	cS	Displayed briefly for acknowledgement	cS Displayed briefly for acknowledgement
57	Restore factory setting	-		-
Fr/Fo	Enable/activate motor	-		-
59	Language	00	Deutsch	00 Deutsch
			English	01 English
			Français	02 Français
			Italiano	04 Italiano
		05	Espanol	05 Espanol
$L E$	Start teaching	-		-
$E F$	Software version		St 20 for DCU1 V2.0	e.g. Ft 20 for DCU1-2M V2.0
CE	Switch to $4^{\text {th }}$ menu	-		-

4. Menu

Display	Explanation	Setting values			
PIt	Drive type	00	Unknown	00	Unknown
		01	Slimdrive SC	01	Slimdrive SC
		02	Slimdrive SF	02	Slimdrive SF
		03	Slimdrive SL	03	Slimdrive SL
		04	Slimdrive SL NT	04	Slimdrive SL NT
		05	Slimdrive SL BO		
		06	Slimdrive SL CO48		
		07	Slimdrive SLT	07	Slimdrive SLT
		08	Slimdrive SLV	08	Slimdrive SLV
		09	ECdrive	09	ECdrive
		10	ECdrive CO48		
		11	Powerdrive	11	Powerdrive
		12	Powerdrive BO		
		13	TSA 360NT BO		
		14	Powerdrive PL CO48		
$E F$	Number of door leaves	01	Close on one side	01	Close on one side
		02	Close centrally	02	Close centrally
717	Power failure in LS, AU or DO	00	No function		
		01	Open	01 Open	
		02	Close		
		03	Battery operation for 30 min., then open		
			Battery operation for 30 min., then close		

Display	Explanation	Setting values				
Eo	Open after fault	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	Door remains closed Door opens after fault (see fault list for details)	01	Door op	after fault
Ht	Bolt type	00	No locking	00	No lock	
		01	Bistable electromechanical locking	01	Bistable locking	romechanical
		02	Motor-driven (rod locking, break axle)	02	Rod lock	break axle
			Closed-circuit current lock		Closed-	current lock
		03	Open-circuit current lock	03		
		04	Lock A (hook bolt lock)		Lock A	bolt lock)
		05		05		
51	Interlocking door system, vestibule	00	Master	00	Master	
			Slave interlocking door			
			system			
			Slave vestibule			
58	CAN address (GEZE building system)	00	01...63 address	00	01... 63	address

23 Fault messages

23.1 Display programme switch

For troubleshooting and fault descriptions see "Faults and measures for controls DCU1 and DCU1-2M", mat. no. 108104.
Currently pending fault messages are displayed briefly in cycles (10 s) on the display programme switch during operation. In addition, they are also entered in the E r and of fault memories.

Display	Fault message	Cause
01	24 V	Control defective.
02	12 V DCU100	Control defective.
03	230 V	Power failure
07	Fire alarm	Smoke detector active or power failure.3)
08	Smoke alarm	Smoke detector active. ${ }^{4)}$
10	Rotary transducer	Rotary transducer signal faulty.
11	Short-circuit	DCU100 current through motor 1 too high.
12	Motor	DCU100 motor 1 defective.
13	SIS1	Testing: Safety sensor "close" 1 faulty or activation takes longer than 4 min .
14	MPS	Control cable break - mechanical programme switch
15	Display programme switch	No communication between control - display programme switch
16	Locking	Locking does not lock.
17	Unlock	Locking does not unlock.
18	Bolt signal	Signals locked and unlocked are sent simultaneously.
19	SIS2	Testing: Safety sensor "close" 2 faulty or activation takes longer than 4 min .
25	Open	Obstacle while opening. ${ }^{2}$
26	Initialisation	Taught opening width is not reached.
27	SIO1, SIO2	Safety sensor "open" or break-out sensor ${ }^{5}$) is active.6)
28	Motor relay	DCU100 motor relay of the main PCB is defective.
29	SIO2	$\mathrm{SIO2}$ or break-out sensor ${ }^{5}$) is not switching or activation takes longer than 4 min.
32	Sabotage	Sabotage active. ${ }^{6)}$
33	Interlocking door system, vestibule	Second drive is not reacting. ${ }^{1)^{6}}$
34	TPS	No communication between control - keypad programme switch
35	Pharmacy	Activation longer than 4 min .
36	Control	Redundancy: Internal redundancy fault of the control ${ }^{2}$)
37	KI1	Movement detector defective or activation longer than 4 min .
38	KI2	Movement detector defective or activation longer than 4 min. ${ }^{\text {2) }}$
39	KA	Activation longer than 4 min .
40	KB	Activation longer than 4 min .
41	SIO1	SIO1 or break-out sensor ${ }^{5}$) is not switching or activation takes longer than 4 min.
42	NOTVER	Emergency lock is activated. ${ }^{1)}$
44	STOP	STOP is active. ${ }^{1)}$
45	DCU100 drive hot	Motor or control temperature main PCB higher than $110^{\circ} \mathrm{C}$.
46	Motor temp. sensor	Motor temperature sensor defective.
47	DCU100 temperature sensor	Temperature sensor main PCB control defective.
48	DCU100 drive overheated	Motor or control temperature main PCB greater than $115^{\circ} \mathrm{C}$.
50	DCU1-T30	Fault while testing DCU1-T30 expansion.3)
51	DCU1-2M-LL, DCU1-2M-RWS	Fault on brake (outputs PA1/PA2 do not open). Emergency push button pressed (motor brake enabled via emergency button, door opens immediately).
53	Manual unlocking	Lock A has been unlocked by hand.
54	Communication DPS	Interference of communication with DPS
60	DCU100	Fault on the main PCB.
61	Rechargeable battery	Rechargeable battery flat.
63	Software	Software of the main PCB does not match software of additional PCB. ${ }^{\text {2) }}$
64	Open during testing	Door not open in required opening time. ${ }^{2)}$

Display	Fault message	Cause
65	Program sequence	Fault in internal computer monitoring.2)
70	DCU101	Fault on the additional PCB. ${ }^{2)}$
71	DCU101 short-circuit	Current through motor 2 too high. ${ }^{2)}$
72	DCU101 motor	Motor 2 defective. ${ }^{2)}$
75	DCU101 control hot	Control temperature additional PCB higher than $110^{\circ} C^{\circ} .^{2)}$
77	DCU101 temperature sensor	Temperature sensor control additional PCB defective. ${ }^{2)}$
78	DCU101 control overheated	Motor or control temperature additional PCB higher than $115^{\circ} \mathrm{C} . \mathbf{2}^{2)}$
79	DCU101 motor relay	Motor relay additional PCB defective. ${ }^{2)}$
90	Control	Control defective.
91	Rotary transducer, motor	No pulses from rotary transducer.
X.x	Position	Leaf position unknown (dot on left display).
X.X	Maintenance	Maintenance requirement (number of cycles, operating hours, dot on right display).
EL	Teaching	Fault during teaching of the control.
8.8.	Display programme switch	No communication between control - display programme switch.

```
1 ~ w i t h ~ D C U 1 ~
2 with DCU1-2M
3 with DCU1-T30
4 with DCU1-RD
5 \text { with DCU1-BO}
6 with DCU1; with these faults on the DCU1 the door does not open if the parameter "Open in case of fault" is switched on.
```


23.2 Keypad programme switch

Display keypad programme switch					Designation	Display display programme switch
OFF	C	θ	\bullet -	1×1		
-	-	-	-	-	No operating voltage	
-	-	-	x	x	Drive too hot	45, 46, 48, 75, 78
-	-	x	-	x	Position	26, x.x
-	-	x	x	-	SIS	13, 19
-	-	x	x	x	Motor	10, 11, 12, 71, 72
-	x	-	-	x	Activation takes longer than 4 min	$35,36,37,38,39,40$
-	x	-	x	x	Interlocking door system, vestibule	33
-	x	x	-	-	Rechargeable battery	61
-	X	x	x	-	Opening time too long	64
x	-	-	-	x	Alarm	07, 08, 32, 42, 44
x	-	-	x	x	DCU	10450
x	-	x	-	-	SIO, BO	27, 29,41
x	x	-	-	-	Power failure	03
x	x	-	-	-	Control	01, 02, 28, 47, 60, 63, 65, 70, 77, 79
x	x	x	-	-	Locking	16, 17, 18, 51
$\begin{aligned} & - \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \text { LED } \\ & \text { LED } \end{aligned}$					

- In addition, the following states are displayed:
- Non-taught winter LED flashes continuously (1 sec . on, 3 sec . off).
- Maintenance winter LED flashes continuously (0.5 sec . on, 0.5 sec . off).
- Fault operating mode displayed for 5 sec ., fault code for 2 sec .
- Block active. Current mode LED flashes once if a key is pressed.

Germany

GEZE Sonderkonstruktionen
GmbH
Planken 1
97944 Boxberg-Schweigern
Tel. +49 (0) 793092940
Fax +49 (0) 7930929410
E-Mail: sk.de@geze.com

GEZE GmbH
Niederlassung Süd-West
Tel. +49 (0) 7152203594
E-Mail: leonberg.de@geze.com

GEZE GmbH
Niederlassung Süd-Ost
Tel. +49 (0) 71522036440
E-Mail: muenchen.de@geze.com

GEZE GmbH
Niederlassung Ost
Tel. +49 (0) 71522036840
E-Mail: berlin.de@geze.com

GEZE GmbH
Niederlassung Mitte/Luxemburg
Tel. +49 (0) 71522036888
E-Mail: frankfurt.de@geze.com

GEZE GmbH

Niederlassung West
Tel. +49 (0) 71522036770
E-Mail: duesseldorf.de@geze.com

GEZE GmbH
Niederlassung Nord
Tel. +49 (0) 71522036600
E-Mail: hamburg.de@geze.com

GEZE Service GmbH
Tel. +49 (0) 1802923392
E-Mail: service-info.de@geze.com

Austria

GEZE Austria
E-Mail: austria.at@geze.com
www.geze.at

Baltic States

GEZE GmbH Baltic States office
E-Mail: office-latvia@geze.com www.geze.com

Benelux

GEZE Benelux B.V.
E-Mail: benelux.n@geze.com www.geze.be
www.geze.nl

Bulgaria

GEZE Bulgaria - Trade
E-Mail: office-bulgaria@geze.com www.geze.bg

China

GEZE Industries (Tianjin) Co., Ltd.
E-Mail: chinasales@geze.com.cn www.geze.com.cn

GEZE Industries (Tianjin) Co., Ltd.
Branch Office Shanghai
E-Mail: chinasales@geze.com.cn www.geze.com.cn

GEZE Industries (Tianjin) Co., Ltd.
Branch Office Guangzhou
E-Mail: chinasales@geze.com.cn www.geze.com.cn

GEZE Industries (Tianjin) Co., Ltd.
Branch Office Beijing
E-Mail: chinasales@geze.com.cn www.geze.com.cn

France

GEZE France S.A.R.L.
E-Mail: france.fr@geze.com www.geze.fr

Hungary

GEZE Hungary Kft.
E-Mail: office-hungary@geze.com
www.geze.hu

Iberia

GEZE Iberia S.R.L.
E-Mail: info@geze.es
www.geze.es

India

GEZE India Private Ltd.
E-Mail: office-india@geze.com www.geze.in

Italy

GEZE Italia S.r.I
E-Mail: italia.it@geze.com www.geze.it

GEZE Engineering Roma S.r.I
E-Mail: roma@geze.biz
www.geze.it

Poland

GEZE Polska Sp.z o.o.
E-Mail: geze.pl@geze.com
www.geze.pl

Romania

GEZE Romania S.R.L.
E-Mail: office-romania@geze.com www.geze.ro

Russia

OOO GEZE RUS
E-Mail: office-russia@geze.com www.geze.ru

Scandinavia - Sweden

GEZE Scandinavia AB
E-Mail: sverige.se@geze.com
www.geze.se

Scandinavia - Norway

GEZE Scandinavia AB avd. Norge E-Mail: norge.se@geze.com www.geze.no

Scandinavia - Denmark

GEZE Danmark
E-Mail: danmark.se@geze.com www.geze.dk

Singapore

GEZE (Asia Pacific) Pte, Ltd.
E-Mail: gezesea@geze.com.sg www.geze.com

South Africa

GEZE Distributors (Pty) Ltd.
E-Mail: info@gezesa.co.za
www.geze.co.za

Switzerland

GEZE Schweiz AG
E-Mail: schweiz.ch@geze.com
www.geze.ch

Turkey

GEZE Kapı ve Pencere Sistemleri E-Mail: office-turkey@geze.com www.geze.com

Ukraine

LLC GEZE Ukraine
E-Mail: office-ukraine@geze.com www.geze.ua

United Arab Emirates/GCC

GEZE Middle East
E-Mail: gezeme@geze.com
www.geze.ae

United Kingdom

GEZE UK Ltd.
E-Mail: info.uk@geze.com www.geze.com

GEZE GmbH

[^0]: 1 AIR curtain
 2 Test

[^1]: 1 AIR curtain
 2 Test

[^2]: 1 AIR curtain
 Test
 VB Connection of the wires and fixing of sensor cables (see section 6.3
 Protecting the sensor cable against short-circuit)
 3 Relay (with free-wheeling diode) Illustration: Static condition with operating voltage switched on

[^3]: 1 Mains fuse on site, min. 4 A slow-burning
 2 Main switch (optional)
 3 Transformer
 4 Control
 5 Cover earthing
 6 Earthing connection

[^4]: - Enter the 4-digit password comprising figures and letters ($0 \ldots 9, \mathrm{~A} \ldots \mathrm{Z}, \mathrm{a} \ldots \mathrm{z}$) using the keys Δ and ∇. The position to be entered is indicated in the line below by the * symbol.
 - Confirm entered position and change to next position using the \square
 - Abort entry using the key \times.
 - After entering the password, confirm by pressing the key.

